9 resultados para ENDOCRINE SYSTEM

em Deakin Research Online - Australia


Relevância:

100.00% 100.00%

Publicador:

Resumo:

BACKGROUND AND AIM: There is limited data on the effects of inactivity (prolonged bed-rest) on parameters of endocrine and metabolic function; we therefore aimed to examine changes in these systems during and after prolonged (56- day) bed-rest in male adults. SUBJECTS AND METHODS: Twenty healthy male subjects underwent 8 weeks of strict bed-rest and 12 months of follow-up as part of the Berlin Bed Rest Study. Subjects were randomized to an inactive group or a group that performed resistive vibration exercise (RVE) during bed-rest. All outcome parameters were measured before, during and after bed-rest. These included body composition (by whole body dual X-ray absorptiometry), SHBG, testosterone (T), estradiol (E2), PRL, cortisol (C), TSH and free T3 (FT3). RESULTS: Serum SHBG levels decreased in inactive subjects but remained unchanged in the RVE group (p<0.001). Serum T concentrations increased during the first 3 weeks of bed-rest in both groups (p<0.0001), while E2 levels sharply rose with re-mobilization (p<0.0001). Serum PRL decreased in the control group but increased in the RVE group (p=0.021). C levels did not change over time (p≥0.10). TSH increased whilst FT3 decreased during bed-rest (p all ≤0.0013). CONCLUSIONS: Prolonged bed-rest has significant effects on parameters of endocrine and metabolic function, some of which are related to, or counteracted by physical activity.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Short stature and later maturation of youth artistic gymnasts are often attributed to the effects of intensive training from a young age. Given limitations of available data, inadequate specification of training, failure to consider other factors affecting growth and maturation, and failure to address epidemiological criteria for causality, it has not been possible thus far to establish cause–effect relationships between training and the growth and maturation of young artistic gymnasts. In response to this ongoing debate, the Scientific Commission of the International Gymnastics Federation (FIG) convened a committee to review the current literature and address four questions: (1) Is there a negative effect of training on attained adult stature? (2) Is there a negative effect of training on growth of body segments? (3) Does training attenuate pubertal growth and maturation, specifically, the rate of growth and/or the timing and tempo of maturation? (4) Does training negatively influence the endocrine system, specifically hormones related to growth and pubertal maturation? The basic information for the review was derived from the active involvement of committee members in research on normal variation and clinical aspects of growth and maturation, and on the growth and maturation of artistic gymnasts and other youth athletes. The committee was thus thoroughly familiar with the literature on growth and maturation in general and of gymnasts and young athletes. Relevant data were more available for females than males. Youth who persisted in the sport were a highly select sample, who tended to be shorter for chronological age but who had appropriate weight-for-height. Data for secondary sex characteristics, skeletal age and age at peak height velocity indicated later maturation, but the maturity status of gymnasts overlapped the normal range of variability observed in the general population. Gymnasts as a group demonstrated a pattern of growth and maturation similar to that observed among short-, normal-, late-maturing individuals who were not athletes. Evidence for endocrine changes in gymnasts was inadequate for inferences relative to potential training effects. Allowing for noted limitations, the following conclusions were deemed acceptable: (1) Adult height or near adult height of female and male artistic gymnasts is not compromised by intensive gymnastics training. (2) Gymnastics training does not appear to attenuate growth of upper (sitting height) or lower (legs) body segment lengths. (3) Gymnastics training does not appear to attenuate pubertal growth and maturation, neither rate of growth nor the timing and tempo of the growth spurt. (4) Available data are inadequate to address the issue of intensive gymnastics training and alterations within the endocrine system.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

UNLABELLED: During and after prolonged bed rest, changes in bone metabolic markers occur within 3 days. Resistive vibration exercise during bed rest impedes bone loss and restricts increases in bone resorption markers whilst increasing bone formation. INTRODUCTION: To investigate the effectiveness of a resistive vibration exercise (RVE) countermeasure during prolonged bed rest using serum markers of bone metabolism and whole-body dual X-ray absorptiometry (DXA) as endpoints. METHODS: Twenty healthy male subjects underwent 8 weeks of bed rest with 12 months follow-up. Ten subjects performed RVE. Blood drawings and DXA measures were conducted regularly during and after bed rest. RESULTS: Bone resorption increased in the CTRL group with a less severe increase in the RVE group (p = 0.0004). Bone formation markers increased in the RVE group but decreased marginally in the CTRL group (p < 0.0001). At the end of bed rest, the CTRL group showed significant loss in leg bone mass (-1.8(0.9)%, p = 0.042) whereas the RVE group did not (-0.7(0.8)%, p = 0.405) although the difference between the groups was not significant (p = 0.12). CONCLUSIONS: The results suggest the countermeasure restricts increases in bone resorption, increased bone formation, and reduced bone loss during bed rest.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Obesity is a major health problem worldwide; it is associated with more than 30 medical conditions and is a leading cause of unnecessary deaths. Adipose tissue not only acts as an energy store, but also behaves like an endocrine organ, synthesising and secreting numerous hormones and cytokines. Angiotensin II (ANG II) is the biologically active component of the renin-angiotensin system (RAS). The RAS is present in adipose tissue and evidence suggests that ANG II is intimately linked to obesity. Indeed, ANG II increases fat cell growth and differentiation, increases synthesis, uptake and storage of fatty acids and triglycerides and possibly inhibits lipolysis. Evidence obtained using genetically modified animals has shown that the amount of body fat is directly related to the amount of ANG II, i.e., animals with low levels of ANG II have reduced fat stores while animals with excessive ANG II have increased fat stores. In humans, epidemiological evidence has shown that body fat is correlated with angiotensinogen, a precursor of ANG II, or other components of the RAS. Furthermore, blocking the production and/or actions of ANG II with drugs or natural substances decreases body fat. The decrease in body fat caused by such treatments predominantly occurs in abdominal fat depots and appears to be independent of energy intake and digestibility. Clearly, ANG II has an important role in the accumulation of body fat and the possibility exists that treatment of obesity will be enhanced by the use of natural or synthetic substances that interfere with ANG II.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Endocrine disrupting chemicals (EDCs) can alter endocrine function in exposed animals. Such critical effects, combined with the ubiquity of EDCs in sewage effluent and potentially in tapwater, have led to concerns that they could be major physiological disruptors for wildlife and more controversially for humans. Although sewage effluent is known to be a rich source of EDCs, there is as yet no evidence for EDC uptake by invertebrates that live within the sewage treatment system. Here, we describe the use of an extraction method and GC–MS for the first time to determine levels of EDCs (e.g., dibutylphthalate, dioctylphthalate, bisphenol-A and 17β-estradiol) in tissue samples from earthworms (Eisenia fetida) living in sewage percolating filter beds and garden soil. To the best of our knowledge, this is the first such use of these techniques to determine EDCs in tissue samples in any organism. We found significantly higher concentrations of these chemicals in the animals from sewage percolating filter beds. Our data suggest that earthworms can be used as bioindicators for EDCs in these substrates and that the animals accumulate these compounds to levels well above those reported for waste water. The potential transfer into the terrestrial food chain and effects on wildlife are discussed.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In rabbits, mean arterial pressure (MAP) increases in response to fat feeding, but does not increase further with progressive weight gain. We documented the progression of adiposity and the alterations in endocrine/cardiovascular function in response to fat feeding in rabbits, to determine whether stabilization of MAP after 3 weeks could be explained by stabilization of neurohormonal factors. Rabbits were fed a control diet or high-fat diet for 9 weeks (n¼23). Fat feeding progressively increased body mass and adiposity. Heart rate (HR) was elevated by week 3 (15±3%) but changed little thereafter. The effects of fat feeding on MAP were dependent on baseline MAP and peaked at 3 weeks. From baseline, MAP p80mmHg, MAP had increased by 8.1±1.3, 4.7±1.7 and 5.6±1.2mmHg, respectively, 3, 6 and 9 weeks after commencing the high-fat diet, but by only 2.6±1.5, 3.0±1.7 and 3.9±1.4mmHg, respectively, in control rabbits. Fat feeding did not increase MAP from a baseline 480mmHg. Plasma concentrations of leptin and insulin increased during the first 3–6 weeks of fat feeding and then stabilized (increasing by 111±17% and 731±302% by week 9, respectively), coinciding with the pattern of changes in MAP and HR. Plasma total cholesterol, triglycerides, renin activity, aldosterone and atrial natriuretic peptide were not significantly altered by fat feeding. Given that the changes in plasma leptin and insulin mirrored the changes in MAP and HR, leptin and insulin may be important factors in the development of hypertensionand tachycardia in the rabbit model of obesity.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The endocannabinoid system (ECS) and retinoic acid (RA) signaling have been associated with influencing lipid metabolism. We hypothesized that modulation of these pathways could modify lipid abundance in developing vertebrates and that these pathways could have a combinatorial effect on lipid levels. Zebrafish embryos were exposed to chemical treatments altering the activity of the ECS and RA pathway. Embryos were stained with the neutral lipid dye Oil-Red-O (ORO) and underwent whole-mount in situ hybridization. Mouse 3T3-L1 fibroblasts were differentiated under exposure to RA modulating chemicals and subsequently stained with ORO and analyzed for gene expression by qRT-PCR. ECS activation and RA exposure increased lipid abundance and the expression of lipoprotein lipase. Additionally, RA treatment increased expression of CCAAT/enhancer binding protein alpha. Both ECS receptors and RA receptor subtypes were separately involved in modulating lipid abundance. Finally, increased ECS or RA activity ameliorated the reduced lipid abundance caused by peroxisome proliferator-activated receptor gamma (PPARγ) inhibition. Therefore, the ECS and RA pathway influence lipid abundance in zebrafish embryos and have an additive effect when treated simultaneously. Furthermore, we demonstrated that these pathways act downstream or independently of PPARγ to influence lipid levels. Our study shows for the first time that the RA and ECS pathways have additive function in lipid abundance during vertebrate development.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this study, we report the distribution of orexin A (OXA), orexin B (OXB), and orexin receptor (OX2R) immunoreactive (ir) cells in the hypothalamus and gastrointestinal tract of Oncorhynchus mykiss fed diets with different dietary fatty acid compositions. Trout were fed five iso-energetic experimental diets containing fish oil, or one of four different vegetable oils (olive, sunflower, linseed, and palm oils) as the added dietary lipid source for 12 weeks. OXA, OXB, and OX2R immunoreactive neurons and nervous fibers were identified in the lateral and ventro-medial hypothalamus. OXA, OXB, and OX2R ir cells were found in the mucosa and glands of the stomach and in the mucosa of both the pyloric cecae and intestine. OX2R ir cells were localized in the mucosa layer of both the pyloric cecae and intestine. These immunohistochemical (IHC) results were confirmed via Western blotting. Antibodies against preproorexin (PPO) crossreacted with a band of ∼16 kDa in the hypothalamus, stomach, pyloric cecae, and intestine. Antibodies against OX2R crossreacted with a band of ∼38 kDa in the hypothalamus, pyloric cecae, and intestine. The presence and distribution of OXA, OXB, and OX2R ir cells in the hypothalamus and gastrointestinal tract did not appear to be affected by dietary oils. The presence of orexin system immunoreactive cells in the stomach, pyloric cecae, and intestine of rainbow trout, but not in the enteric nervous system, could suggest a possible role of these peptides as signaling of gastric emptying or endocrine modulation, implying a main local action played by orexins.